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Light Diffusion Through Clouds and Haze

Abstract

- This paper describes an algorithm for appfoximating the single
scattering model for light diffusion through clouds or haze of constaﬁt
optical density. fhe clouds are contained between two single valued
surfaces. The algorithm assumes that the sun is directly overhead, but gives
convincing pictures for other sun directions. Its efficiency comes from
approximating the exponential decay of transmitted light by a quadratic
polynomial, and from vectorization on the Cray 1.
1.  Introduction ' _

Blinn [1] has described the physical basis for a single scattering model

of light diffusion through clouds or smoke, made up of many small particles.
Under the assumptions of this model, the light from the source may be
scattered by one of the particles, and is alsoc attenuated by other particles
between the source and the scatterer, and between the scatterer and the eye,
but secondary scgttering from one particle to another and then to the eye is
ignored. Blinn [1] showed some pictures of clouds over a simulated planet,
and suggested the study of their geometric forms as an area fof further
research. Voss [2] has recently produced excellent cloud simulations using a
fractal optical densit§ defined as a function of three variables. In this
paper, I consider the mathematically simpler situation of a constant optical
density in the region between the graphs of two related functions of two

variables, which define the clouds' extent above and below a mean cloud plane.
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Dungan (3] has made pictures of semi-transparent clouds over terrain,
integrating the cloud density along each ray. Fishman and Schacter [4] show
an example of opaque ellipsoidal clouds, generated by a height field
algorithm. In both these cases, the arrays of clouds look excessively regular.

Mendelbrot (5] has used fractals to generate much more random clusters
of stars. Snitily [6] has also generated clouds using a fractal height field
algorithm, and introducing transparency with a hit count for multiply covered
pixels and a blurring post-process.

Norton et. al. [7] used a tabulated periodic cloud texture function to
generate real-~time cloud simulations for pilot training, while cleverly
suppressing those periodic terms which might cause an aliasing moire, with a

technique they call "clamping”.

2. Cloud Shapes using Height Fields

At a small scale clouds have a random fractal wispiness, and also at

larger scales, a fractal distribution of sky coverage (Lovejoy [8]). But at a
medium scale, one is impressed by a wavelike periodicity in cioud shapes,
persumably caused by periodic waves in the atmospheric disturbances which
formed them. Here I model the large scale distribution by a polynomial, and
the medium and small scales by a series of superimposed long-crested sine
waves, with different wave vectors, amplitudes and phases. In the limit when
enough terms are included, these series recapture the fractals which result
from inverse fourier transforms. Here we are content with approximations
using from 5 to 15 terms.

Height fields (see [4] or [9]) defined by mathematical functions yield
efficient hidden surface algorithms, since the function eQaluations are
vectorizeable. A combination of polynomials, square roots, absolute values,
and trigonometric terms can be used to compute a function f(x,y) defining the

clouds' height above a mean cloud plane, and also the depth of the clouds



below this same plane. Where f is negative, the clouds are absent. Such a
scheme would give clouds with mirror symmetry and pointed "equator" edges at
the reference plane z = H, as in the cross section in figure 1. Therefore,
f(x,y) was modified to give two new functions g(x,y) and h(x,y), which have
infinite derivative where f(x,y) = 0, so that they meet smdothiy at the
equator, as in figure 2. The function g(x,y) defines the height of the clouds
above the reference plane and the function h(x,y) defines the depth of the |
clouds below the plane. In order to flatten the bottoms of the clouds, h(x,y)
was organized so that it approached a finite limit as f(x,y) increases.

The formulas for g and h in terms of f are as follows:

t = (abs(f) + c)?

sign (sart (t - ¢2), f)

h = -g/sqrt (t + ¢2)

Here ¢ is a positive constant, independent of x and y and g(a,b) is the
sign transfer function g(a,b) = lal b/Ibl. Effectively

g =\/f2+ 2cf

so that
dg= f+c
df

\/f2 + 2cf

_which approaches infinity as f approaches 0. Similarly, dh/df approaches
infinity as f approaches 0. Thus the cloud crosses the reference plane with a
vertical tangent, as in figure 2. The use of the absolute value of f and the
sign transfer function assures that g will be defined and negative whenever f
becomes negative. This facilitates the height field computations, which
interpolate between function values calculated at predetermined samples in a
vertical scan plane. As discussed in [9], we establish a vector {yi} of

increasing sample y values of the form y; = H/(o(maxi + 1 - 1)), so that
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the distribution of picture plane heights g = (H + g (a Yir yi))/yi

is approximately o per pixel, for nearby clouds and as well as distant

clouds.

For positive f, h has the form -WU(fz + 2cf‘)/(f2 + 2cf + 202),

which approaches ~1 as f approaches infinity, flattening the bottom of the
clouds. The constant c affects the rate at which g diverges from f and h
diverges from -1, and thus affects the curvature at the equator.

3. Single Scattering Calculations

In this section, we analyze the single scattering model introduced in
section 1, for clouds defined by two height functions as in section 2, in the
special case that the sun is directly overhead and the density is constant.

Assume, as in figure 3, that the viewer is at the origin, with the
picture plane perpendicular to the y axis, and we wish to compute the cloud
intensities along the vertical scan line xg = a. The ray through the
pixel (xg, yg) = (a, ) will have direction vector V = (o, 1, 8)

-/ : .
of length y =7\/1 + a? + 32. The general point P on this ray has

coordinates (ay, y, By).

We first consider the case where this ray meets the cloud in a single
segment, between Q= (ay;, Yy, By;) and R= (&5, ¥gr BY5)-
Figure 4 shows the projection in the yz plane of the slice plane x = ay.

The vertical ray from P to the sun meets the iop surface of the cloud at
the point S = (ay, y, 9(ay, y) + H). We will write g(ay,y) simply as
g(y) below.

Let P = (ay, y, by) be a representative scattering point along the
ray QR. The sunlight hitting the cloud at S is attenuated by the scattering
along ray SP. Reinterpreting the calculations in Blinn (1], we model the
absorption by an optical density p per unit length. The total density along
SP is then p 5P, or p (g(y) + H - By), and the fraction of sunlight
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reaching P is exp (-p(g(y) + H - gy)). (Note that our optical densities
are interpreted using natural logarithms, rather then the usual logarithms to |

the base 10.)
Let ds be an element of length along the ray QR. Then the fraction of |

energy scattered by points P on this element toward the eye is

 p w gla) ds,
where w is an albedo, and ¢(a) is a phase factor depending on the angle a
between the incidence direction SP arid the viewing direction PQ. (See Blinn

(1) .
This scattered light is then further attenuated along the ray PQ by a

factor

exp (-p PQ) = exp (-pyly-y1)).
Therefore the total contribution of light from the line element ds is.

I, exp(-p(g(y) + H - By)) p w g(a) exp(-py(y-yl)) ds
where 1o is the intensity of the sunlight incident on the cloud top. To get
the total cloud glow I(y;,y,) along the ray QR, we must integrate as P
varies from Q to R. Replacing ds by ydy, we get

y .
I(y;sy9) = J&i I, exp(-p‘g(y) +H - gy))) p wola) exp(-py(y-y;)) dy

y
I owgla) y fyf exp(-p(gly) + H = Bly-y;) - By; + Y(y=y;))dy

y
I, p wgla) yexpl-p(H - fy;)) S 31 exp(-p(y-B)(y-y;)-p gly))dy

y
K J Vi exp (~5(y=y;))exp(~-pg(y))dy

where K

I,puw pla) v exp(*p(H-Byl)) and ¢ = p(y-8).
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4. Approximations

Now we approximate the exponential function by a polynomial. I have

used the approximation

.25 (max(x+2,0))2

exp(x) = sexp(x)

1+x+ .25 x2 if x >-2

=0 if x <~2
This has the correct derivative at x=0, meets the x axis smoothly at x = -2,
and is never negative.

At the end of this section, we will show how to guarantee that x > -2
whenever sexp(x) is used to compute I(y,,¥,). Applying this approximation
to the exponentials in I(y;,y,), we have

exp(-o(y-y;)) = sexp(-o(y-yl))

1 - &y-y;) + .25 62(y-y1)2

=1+ &y + .25 A%+ (-6-.58%,)y + .256%°
2

=a+by+cy

where a,b, and ¢ are expressions in ¢ and Y;- Similarly, we have

R

sexp(-6 g(y))
1 - 8gly) + .25 ¥2 (gly))?

exp(~p g(y))

l1+dgly) +e (g(y))2

Therefore
Y2
I(yl,yz) = K J’yl sexp(-é(y-yl)) sexp(-pg(y))dy
Y2 2 2
=K Jyl (a + by +cy”) (1 +d g(y) + e (g(y))“)dy

y Y, y
KL S 2 (a+by+cy2)dy +ad f2 gly)dy + ae J 2 (g(y))zdy
Y1 Y1 N



y Y. Y. :
+ bd 1'2 y g(y)dy + be 1.2 y(g(y)fzdy + cd 1'2 y2 gly)dy
1 N Y1 ;

y
+ ce J&f yz (g(y))zdy] :

The first of these terms can be integrated trivially. Each of the other

terms is of the form

y
myy = 19? vt (aty))ey

These integrals are moments of the rggion under the curve z = g(y), between
y1 and y,. Thus mg,y is the area of the region, mn/m01 is the y
coordinate of the center of gravity, m,; is the moment of inertia about the
z axis, .5 m02/m01 is the z coordinate of the center of gravity, and so
forth.

As discussed in section 2, the values of g(yk) have been calculated in
a vectorized loop, for a vector {yk& of unequally spaced y values y,.
Since we interpret negative values of g(y) as transparent gaps Qhere the
density is O, we replace g(y) below by max(0,g(y)) using a vectorized maximum
function. The quantities yi max(O,g(y))j (y, - Y1) can then be
calculated in vectorized loops, and the indefinite integral

y .
JUF y1 max(g(y),0)"dy

can be approximated by

k
.
Mg G =)y max(g(y,),00 (v, = ¥, )

b/
The definite integral J&f yi(g(y))jdy can then be approximated by
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subtracting Mij(kl) from Mij(kz), where y,; and y,, are the

precomputed y values nearest to Y1 and Yo and compensating for the
differences Y1 = Yia and Yo = Yio- Conceptually, we tabulate the

accumulated moment as an indefinite integral, and then determine the definite
integral by subtraction. Each ;able entry is_gotten by adding one new term to
the previous entry, so the table is rapidly computed. The efficiency of the
algorithm results from reusing the same indefinite integrals for each pixel in
a vertical scan lipe.

Now consider the general case, where the ray intersects the cloud in a
number of disjoint segments, projecting on the y axis to several intervals, say
Ly;» ¥51h [y3, y,1 and (y5s yg1, @s shown in figure 5. Recall
that p represents the slope dz/dy of the ray, as in figure 3. The y
intervals can be found by using the singularity algorithm (see Newman and
Sproull [10]) to scan convert in the (g,y) plane the polygon approximating
the cloud outlines (see section 2). Since B represents the slope dz/dy of
the ray, the vertices of this polygon are (§k,yk) and (ﬁk,yk), where
8= 90 ¥ /Y, and = hlay,,y, )7y,

The lists of intervals are never stored, but processed on the fly. The
left hand interval endpoint yL(B) for each pixel is initialized at O to
account for a possible viewpoint inside the cloud, a transmission factor
T(g) is initialized at 1, and an intensity J(B) is initialized at O.

The polygon edges for ﬁkand ELare then processed in order of
increasing k, and the total intensity J(B) and transmission T(g) are
accumulated from front to back. Each “"front facing" edge is used to update
the left hand endpoint y, (g) for the pixels affected, and each "back
facing edge" is used to create a right hand endpoints yR(b). As each
right hand endpoint is found, the integral I(y (g), yg(g)) is
approximated as above, the value J(p) is replaced by J(B) + T(g)



I(y_(8), YR(B)), and the value T(e) is then replaced by T(g)
exp(-yp(yg(8) - y (B))). At the end, T(B) can be used to weight

the contribution of the background color.

We now return to the inequalities necessary to stay in the range where
sexp(x) is quadratic. For the factor sexp (-&(y - y;)), the requirement
is that -&(y - y;) > -2, or y <Yy + 2/ This can be guaranteed
by replacing each yp(g) by mih(yR(B), y (B) + 2/8). This is
equivalent td assuming that light scattered from further than yL(B) +
2/¢6 is totally absorbed before it reaches the eye. In addition, yR(6) is
bounded by the distance to the nearest opaque surface so that, for example, a
cloud and a mountain will intersect properly. For the factor exp(-pg(y)),
the requirement is that -pg(y) > -2, or g(y) < 2/p. This can be
guaranteed by correctly choosing g and p, or by replacing g(y) by min(g(y),
2/p).

There are three separate places where the optical density is used: a) to

determine the attenuation of the sunlight along the ray SP of figure 4, b) to
attenuate the scattered light along the ray PQ, and c) to attenuate the
background or farther clouds along the ray QR. In the program, three
corresponding constants P Pp and pare used, which can be set

independently. This is less scientifically correct, but gives greater
flexibility in satisfying the inequalities of the previous paragraph, and in
varying the appearance of the clouds. |

5. Scattering in Haze

If there is any haze in the air below a layer of clouds, the pattern of
light and shade caused by the clouds will be visible in the haze as columns of
rays, apparently converging at the sun. This effect is particularly
impressive when there are isolated gaps in an otherwise dense cloud cover. A

computational scheme similar to the one above can be used to simulate this
effect.



Suppose the haze has a density t. In figure 6, we assume for

simplicity that the function h(x,y) is zero, so that the clouds lie entirely
above the plane z=H. Consider the ray EP from the eye E at the origin, in the
direction (u,1,8), meeting the cloud level at P = (aygs Yoo H). Let
Q = (ay, Y, By) be a point on the ray, and let R = (ay, y, H) be the
point at cloud level directly above P.

As above, the amount of light passing through the cloud to point R is
1, exp (-pg(y)). The light scaftered by a line element (a,1,8)dy at Q
is T w ¢fa) y dy. If desired, the function ¢(a) and the density 1
can be wavelength dependent, to scatter more blue than red as does dust or
haze in the air. The additional path length is RQ + QE = H - By + yy = H
+ (y-8)y, and absorbtion by the haze along this path multiplies the
intensity by a factor exp(-t(H+(y-gly)).

Therefore, the total intensity scattered by the haze is

y
Jp, 1o exp(=pa(y)) T w ga) y exp(-(H + (y - B)y))dy

Yo
I, exp(-H) T w e (a) vy Jo

I~
n

exp(-pg(y) - ey)dy

This integral can also be approximated by the methods discussed abave. Since

e = 1y - p) is small, the upper limit Yo can be much larger without
introducing errors from the polynomial approximation.

The haze attenuates the color at P by a factor exp(-t EP) = exp(~t v yo)‘

The color I at pixel (a,B8) is then
I =exp (-1 yy,) (color at P) + L.
Thus the effects of haze can be calculated efficiently using the same

tabulated functions Mij(k).
The restriction that the sun be directly overhead is more limiting here,

because the columns of light are usually perceived as radiating out from the

sun, rather than as parallel. One could remove this restriction by computing
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l
the haze on a polar coordinate raster about the sun, using the methods aboveJ
which assume that each.scan line represents a plane through the eye and the f
sun. The methods of Catmull and Smith [11] could then be used to resample tﬁe

haze into the coordinate system of the final raster image with which it 1is t$

be combined. ;
6. Composite Pictures :

The results of the cloud algorithm are shown in figures 7 through 11, f
tuken from the animated film [12] prepared for presentation with this paper.:
tach has resolution 510 by 384 pixels, and took approximately 22 seconds of .
Cray-l1 time.

The terrain data for the San Francisco Bay was taken from a Defense
Mapping Agency altitude data base, and vertically exaggerated by a factor of
2. A ray tracing algorithm written by Craig Upson and Pat Weidhaas at
Lawrence Livermore National Laboratory produced the image of the terrain along
a vertical scan line. The waves were added by the algorithm of Max [9], and
were clamped by the algorithm of Norton et. al [7] to suppress any moire

patterns.
To compute the cloud shadows, a ray was traced from the terrain or water

towards the sun direction. At the point (x,y) where this ray pierces the mean
cloud plane, the vertical cloud thickness T = g(x,y) + h(x,y) was found, and
the sunlight was attenuated by the factor Eexp (=pT). The result was used
to multiply the diffuse reflection component of the terrain shading, and to
modify the color of the wave shading component representing light scattered
upward by particles in the water and_then refracted towards the eye.

The clouds were then added by the.algorithm described in sections 2
through 4 above. Figures 7 through 9 used 11 terms in the trigonmetric
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series, and figure 10 used 7 terms and figure 11 used 10 terms. The three
density constants described at the end of section 4 were Pg= .0093, Py
= 0163, and P = .0198, with all distances in meters.

Figure 11 shows a 180° view of Marin, in cylindrical coordinates,
suitable for projection in the IMAX or OMNIMAX format (see [13]). It is part
of a 49 frame cycle prepared for the Siggraph '84 Omnimax film. The wave
vectors for the trigonometric cloud terms were arranged so that each cloud
moves one rank towards the viewe;_during each cycle. Each vertical scan line
represents a vertical plane through fhe eye, so the height field algorithms
still apply. It took 2 1/2 minutes of Cray-1 time to compute figure 11, at
1764 x 1280 resolution.

There is a noticeable defect in the single scattering model: clouds are
actually brighter than the model predicts when they are thick enough for
multiple scattering to be important, but agree with the model hear their
almost transparent edges where multiple scattering is unlikely.

Light coming directly from the sun is not completely lost after it has
been scattered once; it can still diffuse down through the cloud by further
scattering. However, the light from the background can no longer contribute
to the coherent transmitted image after it has been scattered once.

If Pe > Pys the attenuation of the background increases more
rapidly than the cloud's internal glow near its edge. This darkens the cloud
edges realistically, partially compensating for these defects in the model.

The haze color was mixed with the final picture using the factor
sexp (-w) of distance d to the closes ray piercing point. In figure 7
through 9, t = .00004, causing complete obscuration at d=50,000 meters.

In figure 10, T was .0002, and the haze glow of seétion 5 was added. The

cloud reflections were generated in the same way as the cloud shadows.

12~



|
Reflected rays were computed as in Max [9], and traced until they pierced the
mean cloud plane. If the cloud thickness T at the piercing point was greate%
than zero, the factor sexp (-pT) was used to mix a light color for the cloudj

edges with a dark color for the thicker regions. In figure 10, the |

reflections of the clouds and sky were further attenuated by the haze along '
the reflected ray from the waves to the mean c¢loud plane.

No anti-aliasing has been used. Nevertheless, the cloud profiles look
quite smooth, because the variable transparency near their edges produces an
averaging effect similar to that of an anti-aliasing algorithm.

The sun was in the direction (-1,0,3) for the purposes of terrain and
wave shading and cloud shadows, and was vertical for the purpose of cloud
shading. This inconsistency is not disturbing in the pictures.

7. Conclusion

The single scattering model, with a quadratic approximation to the
exponentials, can give realistic renderings of light diffusion through
semi-transparent clouds. By reusing accumulated moments, the scattering
computations can be made very efficient.

8. Acknowledgments
This work was performed under the auspices of the U.S. Department of

Energy, by Lawrence Livermore National Laboratory under contract
W-7405-Eng-48. I wish to thank Teresa Higuera for typing this paper,
especially the equations, Craig Upson and Pat Weidhaas for their terrain
algorithms, John Blunden for the optical printing in the accompanying film,
Dan Asimov for debugging help, Paul Renard for plotting help.

-13-



Disclaimer

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial products, process,
or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government thereof, and shall not be used for
advertising or product endorsement purposes.

-14-



(1]

[2]

(3]

(4]

(5]

Lé]

(7]

(8l

9]

References !
Blinn, J., “Light Reflection Functions for Simulation of Clouds and Dustiy
Surfaces", Computer Graphics, Vol. 16, No. 3 (1982) pp. 21-29.

Voss, R., "Fractal Forgery", presentation at Siggraph '83 tutorial number
10, State-of-the-Art in Image Synthesis, Detroit, Michigan, July 26, 1983.

Dungan, W., "A Terrain and Cloud Computer Image Generation Model",
Computer Graphics, Vol. 13, No. 2 (1979) pp. 143-150.

Fishman, 8., and Schachter, B., "Computer Oisplay of Height Fieids".
Computers and Graphics, Vol. 5 (1980) pp. 53-60.

Mandebrot, B., Fractals, Form, Chance, and Dimension, W. H. Freeman, San
Francisco (1980).

Snitily, M., Personal communication, and Thesis, University of
Washington, 1980.

Norton, A., Rockwood, A., and Skolnoski, P., "Clamping: A Method of
Antialiasing Textured Objects by Bandwidth Limiting in Object Space",

Computer Graphics, Vol. 16, No. 3 (982) pp. 1-8, and accompanying film of
Evans and Sutherland Novoview Flight Simulation, shown at Siggraph '82. _

Lovejoy, S., “Area Perimeter Relation for Rain and Cloud Areas", Science,
Vol. 216 (April 9, 1982) pp. 185-187.

Max, N., "Vectorized Procedural Algorithms:for Natural Terrain", Computer
Graphics, Vol. 15, No. 3 (198l1) pp. 317-324.

[{10] Newman, W., and Sproull, R., Principles of Interactive Computer Graphics,

Second Edition (1979) McGraw HI1I, New York.

(11] catmull, E., and Smith, A., "3-D Transformations of Images in Scanline

Order", Computer Graphics, Vol. 14, No. 3 (1980) pp. 279-285.

{12]) Max, N., Upson, C., and Weidhaas, P., "Clouds over San Francisco", color

sound 16mm film (1983) available from Monaco Labs Inc., 234 9th St., San
Francisco, CA.

[13] Max, N., "Computer Graphics Distortion for IMAX and OMNIMAX Projection",

Proceedings of Nicograph Conference, December 1-3 (1983).

-15-



Figure 1.
Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7)
Figure 8)

Figure 9)
Figure 10)

Figure 11)

Figure Captions

The function f(x,y) and its mirror image -f(x,y) bound pointed
edge clouds, symmetrical with respect to the cloud plane.

The functions g(x,y) above the cloud plane, and h(x,y) below,
define rounded edged clouds with flattened bottoms.

The ray from the origin through the point P = (a,1,8) on the
screen meets the cloud plane in the point Q = (x,y,H).

A viewing ray from the eye piercing the cloud surface at Q and R.
The light from the sun traverses the cloud along the segment SP
before reaching the viewing ray.

Projection in the YZ plane of a section through a cloud, with a
ray piercing the cloud surface in the six points of y; through

yé-

Ray from the eye at E to a cloud at P, with vertical sun rays TE
and RQ.

Scattered clouds above San Francisco airport, viewed from below.

Scattered clouds above downtown San Francisco before it was
settled, viewed from above.

Dense clouds above Angel Island, with Mount Tamalpias in the
distance.

Sunlight shining through hole in clouds above San Bruno hills,
lighting up haze.

A 1800 view of Marin County, showing San Francisco and the
Golden Gate on the left, and Mt. Tamalpias on the right.
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